skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hao, Feng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of ‘beyond Li’ battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite growth. Whilst considerable effort has been invested in the design of novel electrolytes and cathodes, detailed studies of Mg plating are scarce. Using galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg–Mg cells, we establish a phase map characterized by disparate morphologies spanning the range from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and nanowires entangled in the form of mats. The effects of electrolyte concentration, applied current density, and coordinating ligands have been explored. The study demonstrates a complex range of electrodeposited morphologies including canonical dendrites with shear moduli conducive to penetration through typical polymeric separators. We further demonstrate a strategy for mitigating Mg dendrite formation based on the addition of molecular Lewis bases that promote nanowire growth through selective surface coordination. 
    more » « less
  2. Abstract Solid‐state batteries (SSBs), utilizing a lithium metal anode, promise to deliver enhanced energy and power densities compared to conventional lithium‐ion batteries. Penetration of lithium filaments through the solid‐state electrolytes (SSEs) during electrodeposition poses major constraints on the safety and rate performance of SSBs. While microstructural attributes, especially grain boundaries (GBs) within the SSEs are considered preferential metal propagation pathways, the underlying mechanisms are not fully understood yet. Here, a comprehensive insight is presented into the mechanistic interactions at the mesoscale including the electrochemical‐mechanical response of the GB‐electrode junction and competing ion transport dynamics in the SSE. Depending on the GB transport characteristics, a highly non‐uniform electrodeposition morphology consisting of either cavities or protrusions at the GB‐electrode interface is identified. Mechanical stability analysis reveals localized strain ramps in the GB regions that can lead to brittle fracture of the SSE. For ionically less conductive GBs compared to the grains, a crack formation and void filling mechanism, triggered by the heterogeneous nature of electrochemical‐mechanical interactions is delineated at the GB‐electrode junction. Concurrently, in situ X‐ray tomography of pristine and failed Li7La3Zr2O12(LLZO) SSE samples confirm the presence of filamentous lithium penetration and validity of the proposed mesoscale failure mechanisms. 
    more » « less